

尿素(Urea)含量(酶法)检测试剂盒说明书

(货号: G1201W500 微板法 500样)

一、产品简介:

尿素(Urea)又称碳酰胺,旧称尿素氮(BUN),是哺乳动物和某些鱼类体内蛋白质 代谢分解的主要含氮产物,也是目前含氮量最高的氮肥。

该试剂盒利用尿素在脲酶的作用下水解产生氨离子和二氧化碳,氨离子在碱性介质中 与酚显色剂生成蓝色物质, 该物质的生成量与尿素含量成正比。通过于625nm处检测该 有色物质含量讲而得出尿素氮含量。

二、试剂盒组分与配制:

试剂名称	规格	保存要求	备注
试剂一	液体 6mL×1 瓶	-20℃保存	可-20℃分装冻存,尽量减少反复冻融。
试剂二	液体 12mL×1 瓶	4℃保存	
试剂三	试剂三 A 1.5mL×8 支	4℃保存	临用前向一支试剂三A中加入46μL的试
风加二	试剂三 B 0.5mL×1 支		剂三 B,混匀备用, 最好一周内用完 。
标准管	粉体 mg×2 支	4℃保存	每支临用前加1mL去离子水溶解,即浓度为6mg/mL的尿素,检测前再用去离子水稀释200倍(5:995)即成0.03mg/mL(0.5mmol/L)的尿素。

三、所需仪器和用品:

酶标仪、96 孔板、天平、移液器、离心机、去离子水。

四、尿素(Urea)含量检测:

建议正式实验前选取2个样本做预测定,了解本批样品情况,熟悉实验流程,避免实 验样本和试剂浪费!

1、样本制备:

- ① 液体样品:液体样品:澄清的液体可直接检测;若浑浊则离心后取上清液检测。
- ② 细菌/细胞样本: 先收集细菌或细胞到离心管内, 离心后弃上清; 取约 500 万细菌或 细胞加入 1mL 生理盐水,超声波破碎细菌或细胞(冰浴,功率 200W,超声 3s,间 隔 10s, 重复 30 次); 12000rpm 室温离心 10min, 取上清, 置冰上待测。

【注】: 若增加样本量, 可按照细菌/细胞数量(104): 提取液(mL)为500~1000: 1的比例进行提取。

③ 组织样本:取约 0.1g 组织,加入 1mL 生理盐水,进行冰浴匀浆。4°C×12000rpm 离 心 10min,取上清,置冰上待测。

【注】: 若增加样本量,可按照组织质量(g):提取液体积(mL)为1:5~10的比例进行提取。

2、上机检测:

1

- ① 酶标仪预热 30min,设置温度在 37℃,设定波长到 625nm。
- ② 做实验前选取 2 个样本,找出适合本次检测样本的稀释倍数 D (如:尿液样本可用 蒸馏水稀释 100 倍)。

③ 所有试剂解冻至室温,在96孔板中依次加入:

试剂名称(μL)	测定管	空白管	标准管			
	协定自	(仅做一次)	(仅做一次)			
样本	20					
去离子水		20				
标准品			20			
试剂一	10	10	10			
去离子水	130	130	130			
混匀,37℃避光反应 15min						
试剂二	20	20	20			
试剂三	20	20	20			
混匀, 37℃避光反应 20min, 于 625nm 处读取吸光值 A,						
△A=A 测定-A 空白。						

【注】:1.测定管 A 值若超过 1.5,样本可用生理盐水或去离子水进行稀释,稀释倍数 D 代入公式。 2.若 \triangle A 的差值在小于 0.01,可增加样本加样量 V1(如增至 50 μ L,则水相应减少,保持总体积不变;空白管和标准管维持不变),则改变后的 V1 需代入公式重新计算。

五、结果计算:

1、按液体体积计算:

尿素(ng/10⁴ cell)= ($C_{\overline{k}\pi^*}$ × $V_{\overline{k}}$)×10⁶×△A÷($A_{\overline{k}\pi^*}$ -A $_{\overline{2}\bar{n}}$)÷(500×V1÷V)×D=60×△A÷($A_{\overline{k}\pi^*}$ -A $_{\overline{2}\bar{n}}$)×D 尿素(nmol/10⁴ cell)=($C_{\overline{k}\pi^*}$ × $V_{\overline{k}}$)÷60.04×10⁶×△A÷($A_{\overline{k}\pi^*}$ -A $_{\overline{2}\bar{n}}$)÷(500×V1÷V)×D=△A÷($A_{\overline{k}\pi^*}$ -A $_{\overline{2}\bar{n}}$)×D 尿素 氮(nmol/10⁴ cell)=($C_{\overline{k}\pi^*}$ × $V_{\overline{k}}$)÷60.04×10⁶×△A÷($A_{\overline{k}\pi^*}$ -A $_{\overline{2}\bar{n}}$)÷(500×V1÷V)×2×D

$$=2\times\triangle A\div(A_{\text{ke/ke}}-A_{\text{spin}})\times D$$

3、按样本质量计算:

尿素(μ g/g)= ($C_{\overline{k}\pi^*}$ \times $V_{\overline{k}}$)× 10^3 × \triangle A÷($A_{\overline{k}\pi^*}$ A $_{\underline{2}\hat{n}}$)÷(W×V1÷V)×D=30× \triangle A÷($A_{\overline{k}\pi^*}$ A $_{\underline{2}\hat{n}}$)÷W×D尿素(μ mol/g)=($C_{\overline{k}\pi^*}$ \times $V_{\overline{k}}$)÷60.04× 10^3 × \triangle A÷($A_{\overline{k}\pi^*}$ -A $_{\underline{2}\hat{n}}$)÷(W×V1÷V)×D=0.5× \triangle A÷($A_{\overline{k}\pi^*}$ -A $_{\underline{2}\hat{n}}$)÷W×D尿素氮(μ mol/g)=($C_{\overline{k}\pi^*}$ \times $V_{\overline{k}}$)÷60.04× 10^3 × \triangle A÷($A_{\overline{k}\pi^*}$ -A $_{\underline{2}\hat{n}}$)÷(W×V1÷V)×2×D

$$=1\times\triangle A\div(A_{\overline{k}}A_{\overline{c}})\div W\times D$$

C _{标准}---尿素标品浓度, 0.03mg/mL; W---取样质量, g; V1---加入样本体积, 0.02mL;

V_k---加入标准品体积, 0.02mL; V---提取液体积, 1mL; 14----氮元素分子量;

2---一分子尿素含有 2 个氮元素; 60.04---尿素分子量; D---稀释倍数,未稀释即为 1;

500---细胞数量,万。